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Reciprocity theorems for perturbed acoustic media are provided in the form of convolution- and correlation-
type theorems. These reciprocity relations are particularly useful in the general treatment of both forward and
inverse-scattering problems. Using Green’s functions to describe perturbed and unperturbed waves in two
distinct wave states, representation theorems for scattered waves are derived from the reciprocity relations.
While the convolution-type theorems can be manipulated to obtain scattering integrals that are analogous to the
Lippmann-Schwinger equation, the correlation-type theorems can be used to retrieve the scattering response of
the medium by cross correlations. Unlike previous formulations of Green’s function retrieval, the extraction of
scattered-wave responses by cross correlations does not require energy equipartitioning. Allowing for uneven
energy radiation brings experimental advantages to the retrieval of fields scattered by remote lossless and/or
attenuative scatterers. These concepts are illustrated with a number of examples, including analytic solutions to
a one-dimensional scattering problem, and a numerical example in the context of seismic waves recorded on
the ocean bottom.
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I. INTRODUCTION

Reciprocity theorems have long been used to describe im-
portant properties of wave propagation phenomena. Rayleigh
�1� used a local form of an acoustic reciprocity theorem to
demonstrate source-receiver reciprocity. Time-domain reci-
procity theorems were later generalized to relate two wave
states with different field, material, and source properties in
absorbing heterogeneous media �2�.

Fokkema and van den Berg �3� showed that acoustic reci-
procity theorems can be used for modeling wave propaga-
tion, for boundary and domain imaging, and for estimation of
the medium properties. In the field of exploration seismol-
ogy, an important application of convolution-type reciprocity
theorems lies in removing multiple reflections, also called
multiples, caused by the Earth’s free surface �3,4�. These
approaches rely on the convolution of single-scattered waves
to create multiples, which are then adaptively subtracted
from the recorded data. Other approaches for the elimination
of multiples from seismic data rely on inverse-scattering
methods �5�. The inverse-scattering-based methodologies are
typically used separately from the representation1 theorem
approaches �3,4� in predicting multiples.

Recent forms of reciprocity theorems have been derived
for the extraction of Green’s functions �6,7�, showing that the
cross correlations of waves recorded by two receivers can be
used to obtain the waves that propagate between these re-
ceivers as if one of them behaves as a source. These results
coincide with other studies based on cross correlations of
diffuse waves in a medium with an irregular boundary �8�,
caused by randomly distributed uncorrelated sources �9,10�,
or present in the coda of the recorded signals �11�. An early
analysis by Claerbout �12� shows that the reflection response
in a one-dimensional �1D� medium can be reconstructed

from the autocorrelation of recorded transmission responses.
This result was later extended for cross correlations in het-
erogeneous three-dimensional media by Wapenaar et al. �13�,
who used one-way reciprocity theorems in their derivations.
Green’s function retrieval by cross correlations has found
applications in the fields of global �10,14� and exploration
seismology �15,16�, ultrasonics �17,18�, helioseismology
�19�, structural engineering �20,21�, and ocean acoustics
�22,23�.

Although the ability to reconstruct the Green’s function
between two observation points via cross correlations has
been shown for special cases by methods other than repre-
sentation theorems �e.g., �8,16,24��, the derivations based on
representation theorems have provided for generalizations
beyond lossless acoustic wave propagation to elastic wave
propagation and diffusion. More general forms of reciprocity
relations have been derived �7,25,26� which include a wide
range of differential equations such as the acoustic, elastody-
namic, and electromagnetic wave equations, as well as the
diffusion, advection, and Schrödinger equations, among oth-
ers.

In this paper, we derive reciprocity theorems for acoustic
perturbed media. The perturbations of the wave field due to
the perturbation of the medium can be used for imaging or
for monitoring. For imaging, the unperturbed medium is as-
sumed to be so smooth that it does not generate reflected
waves, while discontinuities in the perturbation account for
scattering. In monitoring applications, the perturbation con-
sists of the time-lapse changes in the medium. Although pre-
vious derivations of reciprocity theorems account for arbi-
trary medium parameters that are different between two
wave states �2,3,7�, they do not explicitly consider the spe-
cial case of perturbed media or scattering. In perturbed me-
dia, there are special relations between the unperturbed and
perturbed wave states �e.g., in terms of the physical excita-
tion� that make the reciprocity theorems in such media differ
in form with respect to their more general counterparts �3,7�.

1Representation theorems are derived from reciprocity theorems
using Green’s functions; e.g., see Sec. III of this paper.
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Here we focus on deriving and discussing some of these
differences.

One particularly important aspect of studying scattering-
based reciprocity lies in retrieving wave field perturbations
from cross correlations �7,25�. As we show here, wave field
perturbations by themselves do not satisfy the wave equa-
tions and thus their retrieval does not follow directly from
earlier derivations. More importantly, here we demonstrate
that the accurate retrieval of scattered waves by correlation
does not require energy equipartitioning as does the retrieval
of full-field responses �7,24,25�. This is an important result
for dealing with certain remote sensing and imaging experi-
ments where only a finite aperture of physical sources is
available. Moreover, we show that this result holds both for
lossless and attenuative scattering problems.

We first outline general forms of convolution- and
correlation-type reciprocity theorems by manipulating the
perturbed and unperturbed wave equations for two wave
states. Then, we write the more general reciprocity relations
as representation theorems using the Green’s functions for
unperturbed and perturbed waves in the two states. We show
that the convolution-type theorem results in a familiar scat-
tering integral that describes field perturbations between two
observation points. Next we analyze how the correlation-
type theorems can be used to extract the field perturbations
from cross correlations of observed fields for different types
of media and experimental configurations. Finally, we dis-
cuss the applications of these representation theorems in re-
covering the perturbation response between two sensors from
random medium fluctuations and from coherent surface
sources. Our results are illustrated by one-dimensional ana-
lytic examples and by a numerical example of the application
of scattering reciprocity to acoustic waves recorded at the
ocean bottom.

II. RECIPROCITY THEOREMS IN CONVOLUTION AND
CORRELATION FORM

We define acoustic wave states in a domain V�Rd,
bounded by �V�Rd �Fig. 1�. The outward pointing normal
to �V is represented by n. We consider two wave states,
which we denote by the superscripts A and B, respectively.
Each wave state is defined in an unperturbed medium with
compressibility �0�r� and density �0�r�, as well as in a per-
turbed medium described by ��r� and ��r�. Using the Fourier
convention u�t�=�u���exp�−i�t�d�, the field equations for
state A in a perturbed medium are, in the frequency domain,

�pA�r,�� − i���r�vA�r,�� = 0,

� · vA�r,�� − i���r�pA�r,�� = qA�r,�� , �1�

where pA�r ,�� and vA�r ,�� represent pressure and particle
velocity, respectively, observed at the point r�Rd for a
given time-harmonic frequency ��R. The perturbed fields
for any wave state are p= p0+ pS and v=v0+vS, where the
subscript S indicates the wave field perturbation caused by
medium changes. The quantity qA�r ,�� describes the source
distribution as a volume injection rate density and is the
same for both perturbed and unperturbed waves. Our nota-

tion is such that �= �� /�r1 , . . . ,� /�rd�T and � ·v
=�i=1

d �vi /�ri. The unperturbed wave equations are obtained
by adding the subscript 0 to coefficients and field quantities
in Eq. �1�.

We assume that no volume forces are present by setting
the right-hand side �RHS� of the vector relation in Eq. �1�
equals zero. For brevity, we assume that perturbations only
occur in compressibility, thus �=�0, but our derivations can
be generalized to include density perturbation as well. We
make no restrictions on the smoothness of the material pa-
rameters, i.e., rapid lateral changes and discontinuities are
allowed.

To derive Rayleigh’s reciprocity theorem �1–3�, we insert
the equations of motion and stress-strain relations for states
A and B in

v0
B · E0

A + p0
AE0

B − v0
A · E0

B − p0
BE0

A, �2�

where E and E represent, from Eq. �1�, the equation of mo-
tion �first line of the equation� and the stress-strain relation
�second line of the equation�, respectively. For brevity, we
omit the parameter dependence on r and �. From Eq. �2� we
isolate the interaction quantity � · �p0

Av0
B− p0

Bv0
A� �2�. Next, we

integrate the result of Eq. �2� over the domain V and apply
Gauss’ divergence theorem. This results in

�
r��V

�p0
Av0

B − p0
Bv0

A� · dS = �
r�V

�p0
Aq0

B − p0
Bq0

A�dV , �3�

which is referred to as a reciprocity theorem of the convolu-
tion type �2,3� because the frequency-domain products of
field parameters represent convolutions in the time domain.
A correlation-type reciprocity theorem �2,3� can be derived
from isolating the interaction quantity � · �p0

Av0
B�+ p0

B�v0
A�

from

FIG. 1. Illustration of the domain used in the reciprocity theo-
rems. The domain consists of a volume V, bounded by �V. The unit
vector normal to �V is represented by n. The wave states A and B
are represented by receivers placed at rA �white triangle� and rB

�gray triangle�, respectively. The solid arrows denote the stationary
paths of unperturbed waves G0, propagating between the receivers
and an arbitrary point r on �V.
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v0
B� · E0

A + p0
AE0

B� + v0
A · E0

B� + p0
B�E0

A, �4�

where superscript � denotes complex conjugation. Subse-
quent volume integration and application of the divergence
theorem yield

�
r��V

�p0
Av0

B� + p0
B�v0

A� · dS = �
r�V

�p0
Aq0

B� + p0
B�q0

A�dV ,

�5�

where complex conjugates translate into time-domain cross
correlations of field parameters. For this reason, Eq. �5� is a
reciprocity theorem of the correlation type �2,3�.
Convolution- and correlation-type reciprocity theorems for
the perturbed wave states �e.g., Eq. �1�� can be expressed
simply by removing the subscript 0 from Eqs. �2�–�5�. In Eq.
�5� we assume that �0 and �0 are real quantities �i.e., the
medium is lossless�.

The theorems in Eqs. �3� and �5� hold when the material
properties in states A and B are the same. General reciprocity
theorems that account for arbitrarily different source and ma-
terial properties between two wave states have been derived
in �2,3�. Here, we further develop these reciprocity theorems
for the special case of perturbed acoustic media. First, we
isolate � · �pAv0

B− p0
BvA� from

v0
B · EA + pAE0

B − vA · E0
B − p0

BEA. �6�

After separating this quantity, we integrate over r�V and
apply the divergence theorem. Using p= p0+ pS and v=v0
+vS and subtracting Eq. �3�, we obtain

�
r��V

�pS
Av0

B − p0
BvS

A� · dS = �
r�V

pS
Aq0

BdV

+ �
r�V

i���0 − ��pAp0
BdV ,

�7�

which is a convolution-type reciprocity theorem for per-
turbed media.

The correlation-type counterpart of Eq. �7� can be derived
from the interaction quantity � · �pAv0

B�+ p0
B�vA�, which can

be isolated from

v0
B� · EA + pAE0

B� + vA · E0
B� + p0

B�EA. �8�

After performing the same steps as in the derivation of Eq.
�7� we obtain

�
r��V

�pS
Av0

B� + p0
B�vS

A� · dS = �
r�V

pS
Aq0

B�dV

− �
r�V

i���0 − ��pAp0
B�dV ,

�9�

which is a correlation-type reciprocity theorem for perturbed
acoustic media. Again, we assume that both � and �0 are real
�i.e., no attenuation�.

By interchanging the superscripts in Eqs. �6� and �8� we
derive convolution- and correlation-type reciprocity theo-
rems that relate the perturbations pS

B and vS
B to p0

A and v0
A.

These theorems have the same form as the ones in Eqs. �7�
and �9�, except A is interchanged with B in Eq. �7� and with
B� in Eq. �9�. Although Eqs. �7� and �8� account for com-
pressibility changes only, they can be modified to include
density perturbations. Such modification involves adding, to
the RHS of the equations, an extra volume integral whose
integrand is proportional to ��0−�� and the wave fields vA

and v0
B �or v0

B�� �3�.

III. SCATTERING-BASED REPRESENTATIONS AND
APPLICATIONS

We introduce the Green’s functions, in the frequency do-
main, by setting

qA,B = ��r − rA,B�, rA,B � Rd. �10�

This choice for q allows for expressing the field quantity p in
terms of the Green’s functions G, i.e.,

pA,B�r,�� = G�rA,B,r,�� = G0�rA,B,r,�� + GS�rA,B,r,�� .

�11�

Note that these are the Green’s functions for sources of the
volume injection rate type. The derivation below can also be
reproduced using volume forces �6�. It follows from Eqs.
�11� and �1� that vA,B�r ,��= �i���−1�G�rA,B ,r ,��.

Using these definitions, the convolution-type theorem in
Eq. �7� becomes

GS�rA,rB� = �
r�V

GS�rA,r���r − rB�dV

= �
r��V

1

i��
�GS�rA,r� � G0�rB,r�

− G0�rB,r� � GS�rA,r�� · dS

+ �
r�V

1

i��
G�rA,r�V�r�G0�rB,r�dV , �12�

where V�r�=��2���r�−�0�r�� is the perturbation operator
or scattering potential �27�. For brevity we omit the depen-
dence on the frequency �. Now we consider this equation
under homogeneous boundary conditions on �V, namely, �i�
Sommerfeld radiation conditions �6�, �ii� Dirichlet boundary
conditions, i.e., G0,S�r ,rA,B�=0 ∀r��V, and/or �iii� Neu-
mann boundary conditions, �G0,S�r ,rA,B� ·n=0 ∀r��V.
This gives

GS�rA,rB� = �
r�V

1

i��
G�rA,r�V�r�G0�rB,r�dV . �13�
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Equation �13� is the integral equation known as the
Lippmann-Schwinger equation �27�, commonly used for
modeling and inversion or imaging in scattering problems.
When none of the surface boundary conditions listed above
apply, the surface integral of Eq. �7� should be added to the
right-hand side of Eq. �13�.

Next, we turn our attention to the correlation-type reci-
procity theorem in Eq. �9�. Substituting the Green’s functions
�Eq. �11�� for the wave fields p and v in Eq. �9� gives

GS�rA,rB� = �
r�V

GS�rA,r���r − rB�dV

= �
r��V

1

i��
�G0

��rB,r� � GS�rA,r�

− GS�rA,r� � G0
��rB,r�� · dS

+ �
r�V

1

i��
G�rA,r�V�r�G0

��rB,r�dV . �14�

The surface integral here does not vanish under a Sommer-
feld radiation condition, but with Dirichlet and/or Neumann
boundary conditions we get

GS�rA,rB� = �
r�V

1

i��
G�rA,r�V�r�G0

��rB,r�dV , �15�

which is similar to the Lippmann-Schwinger integral in Eq.
�13�, except for the complex conjugate in the RHS. Under
Neumann and/or Dirichlet boundary conditions, inspection
of Eqs. �13� and �15� states that modeling and inversion or
imaging of scattered fields can be accomplished equally by

taking either time-advanced �i.e., G0�rB ,r�; Eq. �13�� or
time-reversed �i.e., G0

��rB ,r�; Eq. �15�� fields.
The left-hand side of Eq. �14� describes causal wave field

perturbations that propagate from rB to rA as if the observa-
tion point at rB acts as a source. By taking Eq. �14�, inter-
changing subscripts A by B�, and taking the complex conju-
gate, we obtain

GS
��rA,rB� = �

r��V

1

i��
�GS

��rB,r� � G0�rA,r�

− G0�rA,r� � GS
��rB,r�� · dS

− �
r�V

1

i��
G��rB,r�V�r�G0�rA,r�dV . �16�

There are two important differences between Eqs. �14�
and �16� and previous expressions for Green’s function re-
trieval �7,25�. The first difference is that here we obtain the
wave field perturbations GS, which by themselves do not
satisfy the acoustic wave equations �e.g., Eq. �1��, from cross
correlations of GS with G0. Second, the proper manipulation
of unperturbed waves G0 and perturbations GS in the inte-
grands of Eqs. �14� and �16� allows for the separate retrieval
of causal and anticausal wave field perturbations GS�rA ,rB�
in the frequency domain rather than their superposition.
Since the correlation-type representation theorems for G or
G0 �7,25� result in the superposition of causal and anticausal
responses in the frequency domain, their time-domain coun-
terparts retrieve two sides of the signal, i.e., they retrieve the
wave field at both positive and negative times. Because of
this, we refer to the theorems in Refs. �7,25� as two-sided
theorems. The theorems in Eqs. �14� and �16� recover the
time-domain field perturbation response for either positive
�Eq. �14�� or negative �Eq. �16�� times only. Therefore, we
call the theorems in Eqs. �14� and �16� one-sided theorems.

Let us consider a first scenario, which we refer to as case
I �Fig. 2�, defined by

FIG. 2. Schematic illustrations of configurations for case I. Medium perturbations are restricted to the subdomain P, which is placed away
from the observation points. By infinitely extending the sides of �V, the closed surface integral can be replaced by an integral over r
��Vb��Vt, as portrayed in panels �a� and �b�. In our discussion, we fix the sets �Vt and P and have two choices for �Vb such that in �b�
P�V and in �c� P�V.
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�i� V�r� � 0; only for r � P; P � Rd

�ii� sing supp�V�r�� � 0; �i.e., V generates backscattering�

�iii� rB � P; �i.e., perturbations away from receiver acting as source�
�iv� �0�r�, �0�r� � C��Rd�; �i.e., smooth background� ,

�v� �iG0�r,rs��−1 � G0�r,rs� · n�rs� � 0; for �r,rs� � �Vb or � Vt �i.e., outgoing reference waves�

�iGS�r,rs��−1 � GS�r,rs� · n�rs� � 0; for �r,rs� � �Vb �i.e., ingoing scattered waves� .

�17�

In this case, Eq. �14� becomes

GS�rA,rB� = �
r���Vb��Vt�

1

i��

	�G0
��rB,r� � GS�rA,r�

− GS�rA,r� � G0
��rB,r�� · dS

+ �
r�P

1

i��
G�rA,r�V�r�G0

��rB,r�dV , �18�

assuming that P�V �Fig. 2�b��. Note here that the integra-
tion is now carried out for sources on the open top surface
�Vt and on the bottom surface �Vb �Fig. 2�. If P�V �Fig.
2�c��, then V�r�=0 ∀r�V, which results in

�
r�V

1

i��
G�rA,r�V�r�G0

��rB,r�dV = 0. �19�

Furthermore, if P�V as in Fig. 2�c�,
�iG0

��r ,rs��−1�G0
��rB ,r� ·n�0 and �iGS

��r ,rs��−1�GS�rA ,r�
·n�0 for all r��Vb �see conditions in Appendix A and Eq.
�17��, giving

�
r��Vb

1

i��
�G0

��rB,r� � GS�rA,r� − GS�rA,r� � G0
��rB,r�� · dS

= 0, �20�

because the effective contributions of the two integral terms
cancel �i.e., at the stationary points, both terms have the
same phase and opposite polarity�. This is addressed in detail
in Appendix A. Therefore, using Eqs. �19� and �20� in Eq.
�18�, we have

GS�rA,rB� = �
r��Vt

1

i��
�GS�rA,r� � G0

��rB,r�

+ G0
��rB,r� � GS�rA,r�� · dS . �21�

Since this equation is not affected by any changes to �Vb,
this result is equally valid for P�V as in Fig. 2�b�. This is
one of the key results in this paper. For P�V, the results in
Eqs. �19� and �20� do not hold; by inserting Eq. �21� in Eq.
�18� we obtain the identity

�
r��Vb

1

i��
�G0

��rB,r� � GS�rA,r� − GS�rA,r� � G0
��rB,r�� · dS

= − �
r�V

1

i��
G�rA,r�V�r�G0

��rB,r�dV . �22�

In case I �Figs. 2�b� and 2�c��, it follows from Eq. �21�
that we can retrieve the exact scattered field GS�rA ,rB� be-
tween two sensors by cross-correlating reference and scat-
tered waves only from sources on the open top surface �Vt.
Moreover, Eqs. �19�, �20�, and �22� demonstrate that the vol-
ume integral in Eq. �18� exists only to account for medium
perturbations that lie between surface sources and the re-
ceiver that acts as a pseudosource �i.e., rB in this case�.
Therefore, in any practical configuration of case I, the
bottom-surface sources and the volume integral can simply
be neglected. This also implies that the observation points rA
could be anywhere �even inside P�. We illustrate how this
observation holds for different source-receiver configurations
with one-dimensional analytic examples �see below�.

In general, the volume integrals in Eq. �14� cannot be
ignored. Let us consider another example, case II, illustrated
by Fig. 3. The configuration is similar to that of case I �see
conditions in Eq. �17��, but now condition �iii� in Eq. �17� is
modified to rB�P. So for case II, it is impossible to find
source positions on �V for which there are waves whose

FIG. 3. Cartoon illustrating case II. The medium configuration
in this case is the same as for case I �Fig. 2�, but now one of the
receivers at rB is placed inside the perturbation volume P. Solid
arrows illustrate stationary paths of reference waves and the dashed
arrow illustrates the path of a scattered wave. Here r1 illustrates a
source position that yields a stationary contribution to the integrand
in Eq. �21�.
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paths, prescribed by reference waves, are not affected by the
medium perturbation. Therefore, all integrals in Eq. �14�
must always be evaluated. Another such example is case III
in Fig. 4, where the perturbations occur over the entire vol-
ume, i.e., P�V �see condition �i�� in Eq. �17�.

IV. ANALYTIC EXAMPLE: 1D LAYERED MEDIA

As an example of case I �Fig. 2; defined via Eq. �17�� we
present an acoustic one-dimensional model �Fig. 5� with a
constant wave speed c0 and wave number k0, except in a
layer of thickness H where the wave number is given by k1.
This defines V= 	z�R1 
z� �z− ,z+��, P= 	z�R1 
z� �0,H��,
and V�z�=k0

2−k2 ∀z�P. It follows from the field equations
�e.g., Eq. �1�� that for a 1D model with constant mass density
� the pressure satisfies

d2p

dz2 + ���2p = i��q, z � R1, p � C1. �23�

In this wave equation � is given by

� =
1

�c2 =
k2

��2 . �24�

For a homogeneous 1D medium with wave number k0 the
Green’s function solution of expression �23� is given by

G0�z,z0� =
�c0

2
eik0
z−z0
. �25�

For the particular case of a 1D medium, the surface integral
in Eq. �18� reduces to two end point contributions and the
volume integral becomes a line integral. With Eq. �24�, Eq.
�18� under conditions set by Eq. �17� is given in one dimen-
sion by

GS�zA,zB� = S−�zA,zB� + S+�zA,zB� + V�zA,zB� , �26�

with S−�rB ,rA� as the contribution of a source above the re-
ceivers,

S−�zA,zB� =
2

�c0
GS�zA,z−�G0

��zB,z−� , �27�

S+�zA ,zB� as the contribution of a source below the receivers,

S+�zA,zB� =
2

�c0
GS�zA,z+�G0

��zB,z+� , �28�

and V�zA ,zB� as the 1D volume integral,

V�zA,zB� =
i

��
�

0

H

�k0
2 − k1

2�G�zA,z�G0
��zB,z�dz . �29�

The contributions of these different terms are sketched in
Fig. 5.

We first consider the case in which the two receivers are
located above the layer �zA�0, zB�0�. The three contribu-
tions to the perturbed Green’s function are sketched in panels
�a�–�c� in Fig. 5. As shown in Appendix B the contribution
from the source above the layer �Fig. 5, panel �a�� gives the
perturbed Green’s function,

S−�zA,zB� = GS�zA,zB� . �30�

This means that the contribution of this boundary point suf-
fices to give the perturbed Green’s function. Note that the
perturbed Green’s function accounts for all reverberations
within the layer, as well as for the velocity change in the
layer. This demonstrates, in one dimension, the result in Eq.
�21�. As with Eq. �21�, the result in Eq. �30� holds regardless
of where the bottom source z+ is positioned, i.e., whether
P�V or P�V. It follows from a comparison of expressions
�26� and �30� that the contributions of S+ and V cancel,

S+�zA,zB� + V�zA,zB� = 0. �31�

We show in Appendix B that this equality is indeed satisfied
for the one-layer system considered here. This, in turn, dem-
onstrates the result in Eq. �22�.

Next consider sources on opposite sides of the layer
�zA�0, zB�H� as sketched in panels �d�–�f� of Fig. 5. We
show in Appendix B that now the source under the layer
�panel �e� of Fig. 5� suffices to give the perturbed Green’s
function,

FIG. 4. Schematic representation of case III, where P�V, i.e.,
the medium perturbation occupies all of the volume V. As in Fig. 2,
solid and dashed arrows denote unperturbed waves and field pertur-
bations, respectively.

FIG. 5. Location of the receiver coordinates zA and zB and the
source coordinates for the example of the one-layer model. This
being a one-dimensional example of case I �Fig. 2�, the medium
perturbation �in gray shading� is compactly supported in the interval
�0,H� where the jump in wave number is given by k1−k0. S−, S+,
and V denote the 1D contributions of the top source, bottom source,
and line integral, respectively. The three leftmost vertical lines rep-
resent the case where both receivers lie above the perturbations,
while panels �d�–�f� denote the case where there is a receiver on
either side of the perturbation.
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S+�zA,zB� = GS�zA,zB� . �32�

We show in Appendix B that now the contributions S− and V
cancel,

S−�zA,zB� + V�zA,zB� = 0, �33�

which is, of course, required by Eq. �26�. This result is in fact
the same as in Eq. �21� if only rB were beneath P in Fig. 2�b�
and then the contributing surface would be �Vb instead of
�Vt. Since zB and zA are now in opposite sides of P, Eqs. �32�
and �33� also demonstrate that the general results in Eqs. �21�
and �22� hold regardless of the position of the observation
points rA. It is interesting to note that the end point contri-
bution S− satisfies

S−�zA,zB� � e−ik0�zA+zB�. �34�

Note that a change in the choice of the coordinate system
alters the phase of this term. This contribution therefore cor-
responds to an unphysical arrival with an arrival time that is
determined by the average position of the receivers. In
higher dimensions, this can also be observed by inspecting
the volume terms in Eqs. �14� and �16�. An improper cancel-
lation of this contribution with the volume term V would lead
to unphysical arrivals in the extracted perturbed Green’s
function. It has been noted earlier that an inadequate source
distribution may lead to unphysical arrivals in the extracted
Green’s function �26,28,29�.

V. RETRIEVING GS FROM RANDOM SOURCES IN V:
ENERGY CONSIDERATIONS

Consider Eq. �15�, i.e.,

GS�rA,rB� = − �
r�V

i���0 − ��G�rA,r�G0
��rB,r�dV .

�35�

When Dirichlet and/or Neumann boundary conditions apply
�see derivation of Eq. �15��, the pressure observed at any
given observation point ro is given by

p�ro� =� G�ro,r�q�r�dV �36�

and likewise for unperturbed waves. q is the source term in
Eq. �1�. Next we consider random uncorrelated sources dis-
tributed through space, such that

q�r1,��q��r2,��� = 
��r1,����r1 − r2�
R���
2, r1,2 � Rd,

�37�

where 
�=�0−� and 
R���
2 is the power spectrum of a
random excitation function and  · � denotes an ensemble av-
erage. Note from Eq. �37� that the source intensity is propor-
tional to the local perturbation 
� �i.e., �V�r�� at every
source position. We then multiply Eq. �35� by 
R���
2 to
obtain

GS�rA,rB�
R���
2 = − i�� � 
��r1,����r1 − r2�

	
R���
2G�r1,rA�G0
��r2,rB�dV1dV2 =

− i��� G�r1,rA�q�r1�dV1

	�� G0�r2,rB�q�r2�dV2��� . �38�

Using the definitions in Eq. �37�, Eq. �38� yields

GS�rB,rA� =
− i�


R���
2
p�rA�p0

��rB�� . �39�

This equation shows that the perturbation response between
rB and rA can be extracted simply by cross correlating the
perturbed pressure field observed at rA with the unperturbed
pressure measured at rB. This cross correlation must be com-
pensated for the spectrum 
R���
2 and multiplied by i� �i.e.,
differentiated with respect to time�.

Equation �39� is useful in understanding the energy parti-
tioning requirements for the reconstruction of the desired
scattered-wave response. Let us consider, for example, Eq.
�39� for the configuration of case I �Fig. 2, Eq. �17��. In that
case, according to Eq. �37�, the volume sources that are lo-
cally proportional to the medium perturbation are restricted
to P. This results in a nonzero net flux that is outgoing en-
ergy at the boundary of P �we illustrate this in Fig. 6�a��. As
a consequence, there are also preferred directions of energy
flux at the observation points rA,B. This situation is com-
pletely different than the condition of equipartitioning re-
quired for the reconstruction of either G0 or G �7,25�, which
requires that the total energy flux within any direction at the
receivers be equal to zero. To describe scattering, the flux at
the sensor acts as a source must be so that it radiates energy
only toward the position of the scatterers. If the scatterers are
spatially restricted and located away from a sensor, then

FIG. 6. Illustrations of energy considerations for extracting scat-
tered waves from random volume sources in V. To particularly
highlight that equipartitioning is not a requirement for the retrieval
of scattered waves; we use the medium configuration of case I �Fig.
2�. Panel �a� represents the case where energy is purely out going
�indicated by solid arrows� from P; this is the case for scattering in
lossless media or when Im	V�r�� and Im	�0�r�� are nonzero only
for r�P. In the case of general attenuative materials, depicted in
�b�, where Im	�0�r���0 ∀r�V, there is an exchange of in- and
out-going energies on the boundary �P.
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when acting as pseudosource this sensor only needs a limited
radiation aperture to fully reconstruct the scattered field. This
explains why in the examples of case I �e.g., Eqs. �21�, �30�,
and �32�� the full scattered field is retrieved with a finite
source aperture as long as the sensor acting as a source lies
between the physical sources and the scatterers.

VI. SCATTERING IN ATTENUATIVE MEDIA

To incorporate energy losses in wave propagation and
scattering, we take �0�r� ,��r��C �e.g., in Eq. �1�� �30�. By
using this in Eq. �8�, Eq. �9� becomes

�
r��V

�pS
Av0

B� + p0
B�vS

A� · dS = �
r�V

pS
Aq0

B�dV

+ �
r�V

i���0
� − ��pAp0

B�dV ,

�40�

where now we have �0
� instead of simply �0 �Eq. �9��. Then,

using Green’s functions �Eqs. �10� and �11�� and defining the
complex scattering potential as V�r�=�2��Re��−�0�

+ i Im��−�0�� �where Re and Im denote real and imaginary
components, respectively�, we obtain

GS�rA,rB� = �
r��V

1

i��
�G0

��rB,r� � GS�rA,r�

− GS�rA,r� � G0
��rB,r�� · dS

+ �
r�V

1

i��
G�rA,r�Re	V�r��G0

��rB,r�dV

+ �
r�V

1

��
G�rA,r�Im	V�r��G0

��rB,r�dV

− �
r�V

2� Im	�0�G�rA,r�G0
��rB,r�dV . �41�

The first volume integral in Eq. �41� yields the volume inte-
gral in Eq. �14�, while the other volume integral accounts for
scattering attenuation. Note that in attenuative media, even if
there is no perturbation �i.e., V=0�, the last volume integral
in Eq. �41� is nonzero. This case is analyzed by Snieder �30�.

Let us revisit case I �Fig. 2 and Eq. �17��, but now con-
sider it in attenuative media, i.e.,

�i� Re	V�r�� � 0 Im	V�r�� � 0; only for r � P; P � Rd

�ii� sing supp�Re	V�r��� � 0; �i.e., V generates backscattering�

�iii� rB � P; �i.e., perturbations away from receiver acting as source�
�iv� �0�r�, �0�r� � C��Rd�; �i.e.,smooth background�
�v� �iG0�r,rs��−1 � G0�r,rs� · n�rs� � 0; for �r,rs� � �Vb or � Vt �i.e., outgoing reference waves�

�iGS�r,rs��−1 � GS�r,rs� · n�rs� � 0; for �r,rs� � �Vb �i.e., ingoing scattered waves�
�vi� Im	�0�r�� = 0, ∀ r � Rd; or, �i.e., background is lossless�
�vi�� Im	�0�r�� � 0; only for r � P; �i.e., background attenuation is restricted to P�

�42�

Next, under the same arguments as those used to derive Eqs.
�19�–�21�, it immediately follows that, for P�V �Fig. 2�c��,

0 = �
r�V

1

i��
G�rA,r�Re	V�r��G0

��rB,r�dV

+ �
r�V

1

��
G�rA,r�Im	V�r��G0

��rB,r�dV

− �
r�V

2� Im	�0�G�rA,r�G0
��rB,r�dV �43�

and that therefore Eqs. �20� and �21� are also valid for scat-
tered waves in attenuative media. By extension to when
P�V in case I �Fig. 2�b��, it is also true that

�
r��Vb

1

i��
�G0

��rB,r� � GS�rA,r� − GS�rA,r� � G0
��rB,r�� · dS

= �
r�V

1

i��
G�rA,r�Re	V�r��G0

��rB,r�dV

+ �
r�V

1

��
G�rA,r�Im	V�r��G0

��rB,r�dV

− �
r�V

2� Im	�0�G�rA,r�G0
��rB,r�dV . �44�

Thus the general result of Eq. �21�, discussed in Sec. V, is
also valid for attenuative scattered waves regardless of the
choice of configurations for �Vb or rA �Fig. 2�. So just as in
lossless media, it is possible to retrieve the full scattered
response generated by soft and/or attenuative targets by cross
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correlation of scattered and reference waves over a limited
source aperture.

To understand why the result above holds for attenuative
media, consider applying homogeneous Dirichlet or Neu-
mann conditions on �V in Eq. �41�, which yields

GS�rA,rB� = �
r�V

1

i��
G�rA,r�Re	V�r��G0

��rB,r�dV

+ �
r�V

1

��
G�rA,r�Im	V�r��G0

��rB,r�dV

− �
r�V

2� Im	�0�G�rA,r�G0
��rB,r�dV . �45�

We now consider random volume sources similar to Eq. �37�
but now described by

q�r1,��q��r2,��� = Q�r1���r1 − r2�
R���
2. �46�

Note that at every point in the volume, the quantity Q�r�
=
���r�=�0

��r�−��r� in Eq. �46� describes sources which
are locally proportional to �i� Re	V�, �ii� Im	V�, and �iii�
Im	�0�, respectively. Through a derivation analogous to Eq.
�38�, Eq. �45� gives

GS�rB,rA� =
− i�


R���
2
p�rA�p0

��rB�� , �47�

same as in Eq. �39�. For the conditions defining case I in
attenuative media �Eq. �42��, the result in Eq. �47� implies a
flux of outgoing energy at the boundary of P, same as in the
lossless case �Fig. 6�a��. As with lossless scattering, the re-
ceiver that acts as a pseudosource needs only a limited ra-
diation aperture to retrieve the full attenuative scattered-
wave response for case I; this is why the limited source
aperture used in Eq. �21� also accounts for attenuative scat-
tering. This scenario is no longer true, however, if the back-
ground is attenuative, i.e., if conditions �vi� or �vi�� in Eq.
�42� do not hold. In that case, the result in Eq. �47� requires
the ignition of volume sources everywhere that are locally
proportional to the background loss parameters. This leads to
an interchange of energy through the boundary of P, as de-
picted in Fig. 6�b�. This in turn implies that, although energy
equipartitioning is still not a necessary requirement, the cor-
rect pseudoresponse between receivers cannot be retrieved
with a limited radiation aperture; consequently, Eq. �21�
would no longer hold.

VII. APPLICATION EXAMPLE: OCEAN-BOTTOM
SEISMICS

Here we discuss the application of scattering reciprocity
to seismic data acquired on the ocean bottom. A general con-
cept of ocean-bottom seismic data acquisition is shown in
Fig. 7. There, active physical sources are placed on �Vt and
sensors are positioned on the seafloor. The objective of
ocean-bottom seismic experiments is to characterize the scat-
tering potential in the subsurface �i.e., in P; Fig. 7� from the
recorded scattered waves. Since the surface of the ocean acts
as a perfectly reflecting boundary for acoustic waves that

propagate in the experiment in Fig. 7, the recorded data con-
tain not only the desired subsurface scattered waves but also
the reverberations that occur between the ocean surface, the
sea bottom, and subsurface scatterers. These reverberations
become a strong source of coherent noise in extracting infor-
mation about the Earth’s interior. Here we show that the
scattering-based reciprocity relations developed in this paper
can be used to remove the effect of surface-related reverbera-
tions from ocean-bottom seismic data, thus facilitating the
retrieval of information associated only with subsurface scat-
tered waves.

Scattered waves described by reciprocity relations such as
in Eq. �18� satisfy boundary and initial conditions imposed
on �V �or in case I in �Vb��Vt�, but it can be used to relate
different wave states that have varying material properties
and/or boundary conditions outside of V �2,3�. In the particu-
lar case of ocean-bottom seismics, the reciprocity relation in
Eq. �18� can relate scattered waves in the presence of the
ocean’s free surface2 with waves without the free surface.
Note that the result in Eq. �21� is approximate for the case in
Fig. 7 because it violates condition �v�: this leads to the
incomplete cancellation of terms necessary for Eq. �20� to
hold. Furthermore, dipole acoustic sources are typically not
available in ocean-bottom seismic experiments. However,
many such experiments do measure dual fields, i.e., pressure
and particle velocity, at the sea bottom. Since in the given
experiment the source surface is flat and horizontal, i.e., n
= 	0,0 ,n3� ∀r��Vt, then v�r ,rB,A� ·dS=vi=3�r ,rB,A�dS. In
the absence of vertically oriented dipole sources on �Vt, we
replace them by vi=3

obs which is the response of monopole
sources observed in the vertical component of the particle
velocity field at the ocean bottom. This gives, after Eq. �21�,

2The term “free-surface” indicates that homogeneous Dirichlet
conditions apply on the ocean surface.

FIG. 7. �Color� Application of scattering reciprocity to acoustic
waves recorded on the ocean bottom. The cartoon in �a� relates the
specific case of ocean-floor seismology with the configuration of
case I �Fig. 2�. Panel �b� shows the perturbed acoustic wave speed
model used in the numerical experiment. In the model, the solid
dotted line at 0.2 km depth represents the instrumented ocean bot-
tom, the open dotted line depicts the positions of physical sources,
and the triangle represents the location of the pseudosource in the
numerical examples. Note that, in the model in �b�, the perturba-
tions in P consist of the scatterers and interfaces located below the
depth of 0.3 km. The color bar portrays model wave speeds in km/s.
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GS�rA,rB� � �
r��Vt

F����pS�rA,r�v3,0
obs��rB,r�

+ p0
��rB,r�v3,S

obs�rA,r��dS , �48�

where F��� is a signal-shaping filter that accounts for the
imprint of the source-time excitation function. Dipole
sources on �Vt can only be exactly replaced by observed
particle velocities on the seafloor if the surrounding medium
was homogeneous. Therefore, using the observed quantities
v3

obs in Eq. �48� introduces errors in retrieving GS�rA ,rB�.
Because the material heterogeneity in our experiment is as-
sociated with the scattering potential in P �Fig. 7�, the errors
introduced by replacing dipole sources with v3

obs are of
higher order in the scattered waves �i.e., they will be rela-
tively weak in amplitudes�. Most previous applications of
retrieving inter-receiver Green’s functions from seismic data
rely on the cross correlations of pressure fields only, i.e.,

GS�rA,rB� � �
r��Vt

2

�c
F���pS�rA,r�p0

��rB,r�dS , �49�

which assumes a far-field or Sommerfeld radiation boundary
condition, e.g., �6�. In the example we present here we show
and discuss the differences of using Eqs. �48� and �49� for
the extraction of the multiple-free scattered-wave response
between ocean-bottom seismometers.

The two-dimensional numerical simulation is done on the
model shown in Fig. 7�b�. This model represents the per-
turbed medium; the unperturbed medium consists only of the
0.2-km-deep water layer and a homogeneous half-space with
a constant wave speed of 1800 m/s. The medium perturba-
tion thus consists of all scatterers and interfaces lying deeper
than 0.3 km �Fig. 7�b��. Density is kept constant at
103 kg /m3. We model the data using a finite-difference so-
lution to the acoustic wave equation �e.g., Eq. �1��. In the
numerical experiment, pressure �i.e., monopole� sources are
placed on a 0.01-km-deep horizontal line with a constant
lateral spacing of 4 m; pressure and particle velocity fields

are measured by a line of sensors on the water bottom �i.e., at
z=0.2 km; Fig. 7�b�� positioned at every 2 m. With this ex-
periment configuration, we model the acoustic responses in
both the reference and perturbed models. All of the data used
in for retrieving the scattered-wave Green’s functions be-
tween ocean-bottom sensors are modeled with free-surface
�i.e., Dirichlet� boundary conditions on the top of the model.

In Figs. 8�c� and 8�d� we show the result of extracting the
scattered-wave response between receivers using Eqs. �48�
and �49�, respectively. In both figures, the panels represent
the responses recorded at all receivers �i.e., for varying rA�,
excited by a pseudosource synthesized in fixed receiver at
rB= �0.3 km,0.2 km� �triangle in Fig. 7�b��. While Figs.
8�c� and 8�d� clearly show that the responses obtained via
Eqs. �48� and �49� are different, it is important to note that
the input field quantities used for evaluating the integrands
satisfy the same boundary conditions. On the other hand, the
responses of actual sources placed at �0.3 km, 0.2 km� de-
picted in Figs. 8�a� and 8�b� satisfy different boundary con-
ditions: the pressure field in Fig. 8�a� satisfies G0,S�r�=0 at
the sea surface �i.e., free-surface conditions; same as the in-
put fields for Figs. 8�c� and 8�d��, while for the response in
Fig. 8�b� G0,S�r��0 on the ocean surface. The response ob-
tained by Eq. �48� �Fig. 8�c�� approximates that of Fig. 8�b�,
whereas the response generated with Eq. �49� �Fig. 8�d�� is
close to that of Fig. 8�a�. In replacing the dipole sources
required by Eq. �21� by the vertical component of particle
velocity in Eq. �48�, we achieve an effective cancellation
between in- and out-going waves at �Vt that results in ap-
proximating the scattered-wave response without the free-
surface condition present in the original experiment. On the
other hand, by cross correlating only pressure scattered and
reference waves �Eq. �49��, we assume that there are only
out-going waves at �Vt and thus in- and out-going terms do
not cancel. Consequently, when using Eq. �49� we retrieve
scattered waves that approximate the true perturbations in
the presence of free-surface boundary conditions �compare
Figs. 8�a� and 8�d��.

With this numerical example we demonstrate that our for-
mulations of scattering-based reciprocity can be used to ex-
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FIG. 8. Comparisons of true scattered-wave responses with pseudosource responses obtained by cross-correlating reference and scattered
waves. The true scattered-wave responses for a physical source at �0.3 km, 0.2 km� �see Fig. 7�b�� are displayed in �a� modeled with a free
surface �at z=0 km� and in �b� where it is modeled without a free surface. The responses in �c� and in �d� correspond to pseudosources
retrieved via cross correlations. The result in �c� is obtained with Eq. �48�, while �d� results from applying Eq. �49�. It is important to note
that the input data to both �c� and �d� were modeled with a free surface.
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tract scattered waves between receivers in ocean-bottom
seismic experiments. Moreover, we show that by using dif-
ferent combinations of single- or dual-field measurements we
extract scattered fields that satisfy different boundary condi-
tions. This is a particularly important step in isolating or
separating the reverberations caused by the water surface
from ocean-bottom seismic data.

VIII. DISCUSSION AND CONCLUSION

In this paper, we present a suite of integral reciprocity
equations for acoustic scattering that can be useful both for
theoretical considerations and for applications in retrieving
scattered waves via correlations and possibly in imaging or
inversion of scattered fields.

A fundamental result in this paper is that the retrieval of
scattered waves by cross correlations or cross convolutions
does not necessarily rely on a closed surface integral or on
invoking energy equipartitioning. This is an important differ-
ence between the work we present here and previous work in
the field of Green’s function retrieval from diffuse-wave cor-
relation �9,17,31� or from correlation of deterministic wave
fields �6,25�, which do require energy equipartitioning. Most
previous studies show that equipartitioning of energy is nec-
essary to recover the superposition of the causal and anti-
causal wave fields G or G0 �i.e., unperturbed or perturbed�.
Since for scattered fields equipartitioning is not a necessary
requirement, our expressions isolate the wave field perturba-
tions GS separately from its anticausal counterpart GS

�. More-
over, for systems that are invariant under time reversal,
Green’s function retrieval by wave field cross correlations
requires only a surface integration �6,25,31�, whereas the re-
trieval of the perturbations GS from correlations of wave
field perturbations with unperturbed wave fields requires ad-
ditional volume integrals. Our analysis shows that, in fact,
these volume terms counteract the contributions of closed
surface terms, which reaffirms that, for arbitrarily spatially
varying scattering potentials, the retrieval of scattered fields
relies on uneven energy partitioning.

This requirement of uneven radiation for the retrieval of
scattered waves can be advantageous for certain experiment
configurations. In the case of scattered waves generated by
remote perturbations, we demonstrate that the scattered field
propagating between receivers is fully retrieved by correlat-
ing scattered and reference waves generated by sources in an
open surface. Again, previous general formulations of
Green’s function retrieval �7,24,25� state that sources must
surround the receivers to correctly retrieve, via cross corre-
lations, the waves that propagate between receivers. In the
absence of a closed source aperture, the retrieved responses
are prone to dynamic distortions and artifacts �26,29�. This
becomes a limitation for the retrieval of receiver responses
by correlations in experiments where surrounding the me-
dium with sources is not practical. If, however, the retrieval
of scattered waves is the objective, then our results show that
the scattered field can be accurately retrieved with a limited
source array �for the configuration in Fig. 2�. This is an im-
portant experimental advantage brought by the analysis of
scattering-based reciprocity. Furthermore, it is important to

note that these results hold both for lossless and attenuative
scattering.

In this paper we present a direct application of scattering
reciprocity to ocean-bottom seismic data, where we retrieve
subsurface scattered waves from ocean-bottom receivers
without the interference of reverberations generated by the
water surface. Other applications of the scattering reciprocity
relations to retrieving scattered signals have been proposed
in �29,32,33�. In the context of retrieving scattered waves by
cross correlation, the theory we discuss also draws experi-
mental validation from the work of other authors. In particu-
lar, we point out the studies performed by Bakulin and Cal-
vert �16� and by Mehta et al. �34�, with their so-called virtual
source method. Their methods explicitly correlate transmis-
sion and reflection responses to extract desired scattered
waves and directly verify our results. Note that although
most of the examples cited here come from the field of geo-
physics, our results are immediately applicable to other fields
in acoustics such as physical oceanography, laboratory, and
medical ultrasonics, and nondestructive testing.

While the derivations and examples presented here
heavily focus on the application of scattering-based reciproc-
ity to retrieving scattered responses by cross correlations, we
point out some possible applications to inverse problems.
One such application is the use for the exact form of the
correlation-type representation theorems for the calculation
of Fréchet derivatives �35�, which consist of the partial de-
rivatives of the wave field perturbations with respect to the
medium perturbations. These derivatives can be directly de-
rived from the theorems we provide here. These derivatives
are important for the computation of sensitivity kernels used
in wave form inversion �35,36�, in imaging �37�, or in for-
mulations of wave-equation based tomography �36,38�. Still
in the context of inverse scattering �5,37�, the theory we
present here is used in �39� for establishing formal connec-
tions between different approaches in imaging such as seis-
mic migration �40,41�, time-reversal methods �42,43�, and
image-domain inverse scattering �41,44�.

Apart from imaging applications, our results �both in
terms of retrieving wave field perturbations and for estimat-
ing medium perturbations� can be used for monitoring tem-
poral changes in the medium. In geoscience, this could be
applied to remotely monitoring the depletion of aquifers or
hydrocarbon reservoirs or monitoring the injection of CO2
for carbon sequestration. In materials science, our results can
be used to monitor material integrity with respect, for ex-
ample, to temporal changes in temperature or changes due to
crack formation. The detection of earthquake damage is a
potential application in the field of structural engineering.
Within medical imaging applications, our expressions can be
tailored, for instance, to observe the evolution of living tissue
�e.g., transplants and tumors� from a series of time-lapse ul-
trasonic measurements.
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APPENDIX A: CONDITIONS FOR A VANISHING
INTEGRAL OVER �Vb

To determine the situation when the surface integral for
the bottom surface in Eq. �20� vanishes, we first observe that
in general this surface integral cannot vanish. For example,
consider the case when there is a free surface present above
the bottom surface �Vb �Fig. 9�. Then there will be stationary
sources on the bottom surface that contribute to the construc-
tion of the scattered field with a source at location rB. The
drawn propagation paths in Fig. 9 are the outermost paths
that are still needed to illuminate the scattering region with
sources on the surface �Vb, and indeed all the sources in
between sleft and sright on the integration surface give station-
ary contributions to the surface integral.

To see in which special cases the surface integral does
vanish, we follow �6� and decompose the wave field into
in-going and out-going waves of the volume V. That is, we
assume

G0 = G0
in + G0

out, �A1�

GS = GS
in + GS

out. �A2�

Using this in Eq. �20�, it follows that

�
�Vb

1

i��
	G0,B

� � GS,A − GS,A � G0,B
� � · dS

= �
�Vb

1

i��
	�G0,B

in�

+ G0,B
out����GS,A

in + �GS,A
out� − �GS,A

in + GS,A
out�

	��G0,B
in�

+ �G0,B
out��� · dS , �A3�

where we introduced the shorthand notation G�S,0�,�A,B�
=G�S,0��r�A,B� ,r� with the subscripts �S ,0� indicating either
the scattered �S� or background �0� Green’s function, while
the subscripts �A ,B� denote the receiver location at either rA
�A� or rB �B�. Following again �6� and assuming that the
medium is locally smooth around �Vb, we can approximate
the gradients by a multiplication of the Green’s function with

�i
cos ��x�
� /c�x�, where c�x� is the local velocity at �Vb
and ��x� is the local angle between the ray and the normal
on �Vb. The minus sign relates to waves traveling into V,
while the plus sign relates to waves traveling out of V. By
the exact same reasoning as �6� it follows that at the station-
ary source locations on �Vb the absolute values of the co-
sines of the ray angles are the same for GS,A and G0,B. That
means that contributions of the terms in Eq. �A3� with prod-
ucts of in- and out-going Green’s functions give exactly op-
posite contributions. Therefore these “cross” terms do not
contribute to the surface integral, leaving the surface integral
as

�
�Vb

1

i��
	G0,B

� � GS,A − GS,A � G0,B
� � · dS

= �
�Vb

2

i��
	GS,A

in � G0,B
in�

+ GS,A
out � G0,B

out�� · dS . �A4�

From Eq. �A4� it is easy to see when the surface integral
vanishes. The only meaningful situations to consider are the
cases

�i� GS,A
in =0 and n̂ ·�G0,B

out =0 and
�ii� GS,A

out =0 and n̂ ·�G0,B
in =0,

where n̂ is the outward pointing normal on �Vb. We are
interested in analyzing when the surface integral vanishes if
the surface �Vb is above the perturbation volume P. In this
situation case �i� is not really relevant, as then there would be
no energy scattering into the volume V, which is not a com-
mon situation encountered. Therefore case �ii� provides the
relevant conditions when the surface integral vanishes. This
means that there cannot be any scattered energy traveling
outward of V through �Vb. That is, scattered energy is not
allowed to change propagation direction from into V to out
of V above �Vb �or from up to down in case �Vb is horizon-
tal�. Moreover, the background wave field cannot change
propagation direction from out of V to into V below �Vb �or
from down to up in case �Vb is horizontal�. Both these con-
ditions are summarized in Fig. 10.

APPENDIX B: ANALYSIS OF THE SCATTERED-WAVE
RESPONSES FOR THE ONE-LAYER MODEL

In this appendix we derive Green’s function extraction for
the 1D model of Fig. 5. Within every layer, the solution

FIG. 9. Illustration of stationary points on the bottom surface
�Vb that yield physical contributions to scattered waves that propa-
gate between the observation points.

FIG. 10. Cartoons representing the conditions required for the
bottom-surface integral to vanish in the case of Eq. �20�. Panel �a�
states that ingoing reference waves due to sources on �Vb must be
absent, whereas �b� indicates that there should be no outgoing scat-
tered waves excited by sources on �Vb.
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consists of the superposition of waves exp��ikz�, with k as
the wave number in each layer. Since d��z�

dz =0, G�z ,z0�
�C2�R1�. For a source above the layer �z0�0� this leads to
the following exact Green’s function for z�0:

G�z,z0� =
�c0

2
eik0
z−z0
 +

�c0

2

i

2D
� k1

k0
−

k0

k1
�sin k1He−ik0�z+z0�,

�B1�

while for 0�z�H

G�z,z0� =
�c0

2

1

2D
�1 +

k0

k1
�eik1�z−H�−ik0z0

+
�c0

2

1

2D
�1 −

k0

k1
�e−ik1�z−H�−ik0z0 �B2�

and for z�H

G�z,z0� =
�c0

2

1

D
eik0�z−H−z0�, �B3�

with

D = cos k1H −
i

2
� k1

k0
+

k0

k1
�sin k1H . �B4�

For z�0 the perturbed field is given by the last term of
expression �B1�, while for z�H the perturbed field GS=G
−G0 follows by subtracting expressions �B3� and �25�,

GS�z,z0� =
�c0

2

1

D
eik0�z−z0��e−ik0H − D� . �B5�

We first compute the contribution S− when both receivers
are above the layer �panel �a� of Fig. 5�. Inserting the last
term of expression �B1� and Eq. �25� into expression �27�
gives

S−�zB,zA� =
2

�c0

�c0

2

i

2D
� k1

k0
−

k0

k1
�

	sin k1He−ik0�zA+z−��c0

2
e−ik0�zB−z−�

=
�c0

2

i

2D
� k1

k0
−

k0

k1
�sin k1He−ik0�zA+zB�. �B6�

A comparison with the last term of expression �B1� shows
that S− gives the perturbed Green’s function �expression
�30��. The contribution from a source below the layer �panel
�b� of Fig. 5� follows by inserting expressions �25� and �B5�
into Eq. �28�,

S+�zB,zA� =
2

�c0

�c0

2

eik0�z+−zA�

D
�e−ik0H − D�

�c0

2
e−ik0�z+−zB�

=
�c0

2

eik0�zB−zA�

D
�e−ik0H − D� . �B7�

To get the volume term �panel �c� of Fig. 5� we insert ex-
pressions �25� and �B2� into Eq. �29� to give

V�zB,zA� =
i

��
�k0

2 − k1
2�

�c0

2

1

2D
	 �

0

H ��1 +
k1

k0
�eik1�z−H�−ik0zA

+ �1 −
k1

k0
�e−ik1�z−H�−ik0zA��c0

2
e−ik0�z−zB�dz . �B8�

Carrying out the z integration and rearranging terms gives

V�zB,zA� = −
�c0

2

1

2D
eik0�zB−zA���1 +

1

2
� k0

k1
+

k1

k0
��

	�e−ik0H − e−ik1H� + �1 −
1

2
� k0

k1
+

k1

k0
��

	�e−ik0H − eik1H�� . �B9�

The term between curly brackets satisfies

� ¯ � = 2e−ik0H − �eik1H + e−ik1H� +
1

2
� k0

k1
+

k1

k0
��eik1H − e−ik1H�

= 2�e−ik0H − D� , �B10�

where expression �B4� is used in the last identity. Using this
result gives

V�zB,zA� = −
�c0

2

1

D
�e−ik0H − D�eik0�zB−zA�. �B11�

A comparison with Eq. �B7� proves expression �31�.
We next consider the situation where the receivers are on

opposite sides of the layer �panels �d�–�f� in Fig. 5�. The term
S+ �panel �e�� follows by combining expressions �25�, �28�,
and �B5� to give

S+�zB,zA� =
2

�c0

�c0

2

1

D
eik0�z+−zA��e−ik0H − D�

�c0

2
e−ik0�z+−zB�

=
�c0

2

1

D
eik0�zB−zA��e−ik0H − D� . �B12�

A comparison with expression �B5� shows that this equals
the field perturbation �expression �32��. The contribution
from the other end point �panel �d� in Fig, 5� follows by
combining expressions �25�, �27�, and �B1�,

S−�zB,zA� =
2

�c0

�c0

2

i

2D
� k1

k0
−

k0

k1
�

	sin k1He−ik0�z−+zA��c0

2
e−ik0�zB−z−�

=
�c0

2

i

2D
� k1

k0
−

k0

k1
�sin k1He−ik0�zA+zB�.

�B13�

The volume term �panel �f� of Fig. 5� follows from combin-
ing expressions �25�, �29�, and �B2�,

REPRESENTATION THEOREMS AND GREEN’s FUNCTION… PHYSICAL REVIEW E 80, 036605 �2009�

036605-13



V�zB,zA� =
i

��
�k0

2 − k1
2�

�c0

2

1

2D
	 �

0

H ��1 +
k0

k1
�eik1�z−H�−ik0zA

+ �1 −
k0

k1
�e−ik1�z−H�−ik0zA��c0

2
e−ik0�zB−z�dz . �B14�

Carrying out the z integration and using that � /k0=c0 give

V�zB,zA� =
i

��
�k0

2 − k1
2���c0

2
�2 1

2D

2

k1
sin k1He−ik0�zA+zB�

= −
�c0

2

i

2D
� k1

k0
−

k0

k1
�sin k1He−ik0�zA+zB�. �B15�

Together with Eq. �B13� this proves Eq. �33�.
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